Solan Subsea Oil Storage Tank

David Dunn
January 2019
Content

• Field Introduction
• Subsea Oil Storage Tank
• How does it work?
• Mechanical Design
• Process Design
• Into Production Operations
• Offloading from a 300k bbl subsea storage tank
• Observations & Conclusions
Field Introduction

Project
- **Solan**

Operator
- Premier (100%)

Status
- Producing

Licence
- P164

Block
- 205/26

Water Depth
- 132m

1st Oil
- Apr 2016

Reservoir
- Jurassic Solan sandstones

API
- 27°API

Wells
- 2 producers and 2 WI

Facilities
- Jacket and Storage Tank
Facilities Overview

Platform (Jacket and Topsides)
- 7500 tonne conventional steel jacket in 138m of water
- Processing facilities, water injection system and power generation
- Produced water treatment for re-injection
- Designed as normally unmanned and operated remotely

Wells
- 4 subsea wells
- (2 x producers, 2 water injectors)

Storage Tank - SOST
- 300,000 storage tank
- Winter period - manage offloads to avoid shutdowns based on weather forecasts.

Tanker loading system
- Shuttle tankers connect and transport oil
- Teekay, the tanker operator is well regarded and experienced with the system.
Subsea Facilities

Subsea Layout

- The tank uses an ‘oil over water’ storage system. (SOST)
- As oil is produced, it is introduced to the top of the tank thereby displacing seawater from the bottom of the tank as ballast water.
- The ballast water is routed to the process system and injected into the reservoir.

Subsea Storage Tank

- 4 Horizontal wells
- Two drill centres located c. 300m from the platform.
- Producers completed with ESPs
- P1 single ESP (failed)
- P2 dual ESP system online.
- Individual flexible tie backs to the platform
So how does it work?

Its not a pumped solution...oil is displaced!!
Subsea Oil Storage Tank (SOST)

- 10,100 te carbon steel box
- 45 x 45 x 25m Theoretical volume 314,538 bbls – useable volume ~275,000 bbls
- 8x 96” piles driven to 45m + mud mats; bottom sits ~1m above sea-bed
- External ESDV porch and line connections are low on tank
- Tank designed for a 30 year lifecycle
- 10” Oil / 12” ballast and 24” displacement pipeline
- Oil export to tanker via 24” pipeline
SOST Construction

Early subsite cell fabrication

- SOST built in a major Dubai Dry dock
- Approx. 1500 personnel on site each day during peak construction
- Complex internal construction – approx 120km of welding

Later cell stack up in main fab yard
• Took 23 months from first steel cut to sailaway versus plan of 18 months – hot market, weld access and also change to weld spec was key impacts

• Actual man-hours to complete ~4,000,000 for total project and ~2.3 million construction man hours – all LTI free with controlled culture.
Installation, Hook up and Commissioning

- 1 month journey via Suez on an HLV from Dubai to Lerwick
- 3 tug tow to field – main tug on bridle and two on sides.
- 80 nm from Lerwick to the field took approx 26 hours

Positioning of SOST to HLV with tug assist
Installation, Hook up and Commissioning

- Crew transferred from HLV to SOST via basket
- Tugs connected at all times
- 16 flooding valves – 4 x valves in each quadrant to displace air during install
- SOST pre dosed with oxy scav, biocide and leak detection dye
- Valves and vent platforms all removed once installation and piling complete
- All flowlines / pipeline connections completed by diver
- Leak tested by filling caisson t +28m LAT and inspected by ROV
- SOST dynamic commissioning by water to tanker prior to flowing hydrocarbons topside
Mechanical Design

• Cyclic loadings include
 – Sea-state
 – Oil-water level changes during offloading

• Steel is the economic choice with
 – Major external & internal cathodic protection
 – Lower internal 2m is coated
 – Internal pipework is CRA 25Cr
 – Biocide & corrosion inhibitor use

• Cathodic protection not unusual but…
 – No access to SOST internal....
 – 23,792 anodes inside....this number doubled during design.
 – 1421 external...again this doubled during design

• Fatigue...
 – Full 3D model created to assure lifecycle design and ongoing analysis through operations
Process Design

- Ballast water returns to topsides - Treat to inject to reservoir or to sea
- Detailed pressure surge work mitigates resonance, hammer and fatigue risks
- Control & instrumentation;
 - External pod nucleonic level array
 - Independent LL external level trip
 - ESD logic and hardware installed
- Emulsion “rag” layer can be offloaded
- Open water caissons as ultimate spill is crucial to the SOST if topsides issues - +28m or equivalent to 2.8bar
- Nucleonic resolution to 120-240mm resolution – can see rag layer
- SOST has its own dedicated umbilical
- ESD porch low on tank contains ESD and bypass valving/lines
- Ballast water line is open and only an ROV operable valve installed – it is the tanks pressure protection.
• 22 x ~250 kbbils cargo offloads since start up in 2016

• Field availability >96%; zero SOST tank tops deferral or tanker waiting....

• No rag layer clearly observed to date

• Subsea inspection carried out on an annual basis

• Hydrogen sulphide management has required biocide/scavenger batching

• Assumptions from the design stage have been shown to be robust regarding offloading, weather dependency and times required.
Oil Offloading....West Of Shetland via Shuttle Tanker

It’s a millpond out there of course.....
Oil Offloading….West Of Shetland via Shuttle Tanker

...Or maybe not.....Storm Gertrude...22M waves recorded January 2016
Oil Offloading….West Of Shetland via Shuttle Tanker

- Hydraulic studies showed head delta drives 275,000 bbls oil via a 24” seabed flowline & 20” hose to the tanker bow in ~30 hrs.

- No platform/SOST host oil export metering

- Tanker connection uses standard SAL system with messenger line and HEV

- Offload operations & communications uses a “green line” system; tanker can trip the platform’s SOST water displacement pumps

- Operating Limits West of Shetland 4.5 Hs for connection and 5.5m Hs Disconnection

- 22 x cargoes successfully offloaded to date

- Tanker operations around 36 hours from arrival – Departure for a 240k bbl parcel…

- Winter period 2015 / 2016 as an example….26 days of nothing below a sea state of 3m Hs
Observations / Conclusions

• An ~300kbbls stand-alone SOST project has been executed in the hostile WoS environment

• The concept can offer advantages to marginal fields especially
 • where tie-back ullage is unavailable
 • stand-alone FPSO/FSO schemes are high cost/unavailable

• A rigorous design approach will mitigate hazard & environmental risks
 • e.g. safe field layouts, a closed liquid system with caisson level control, detailed material selection, fatigue analysis, compartments etc.
AOB