Intelligent use of Intelligent Completions

22nd August 2017

Ian Phillips
Chief Executive

fostering and funding innovation
Agenda

• Why Intelligent Completions
• The technology
• Making a decision
It’s complicated

• Conventional approach
 • Perforate everything
 • Maybe perforate in sequence
Reservoirs are not uniform

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Oil in place</th>
<th>Pressure</th>
<th>Permeability</th>
<th>Proximity of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reservoir understanding at the start of the field life
Conventional approach to well management

- Drill your well
- Run your production tubing
- Perforate all four reservoirs to maximise early production
 - And hence revenue
- Ad hoc data collection
- Deal with problems later
 - Try and shut off water production
 - Re-perforate if scale forms
There is uncertainty – and reservoirs are not uniform

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Oil in place</th>
<th>Pressure</th>
<th>Permeability</th>
<th>Proximity of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reservoir understanding 5 years later
A more intelligent approach to well management

- Perforate all four reservoirs
- Run an intelligent completion
- Real time monitoring
- Manage the problems proactively
 - Prevent or defer water production
 - Re-perforate if scale forms
Reality is more complicated
Typical intelligent completion in a horizontal well

Intelligent Completion

- Hydraulic, tubing-retrievable, surface-controlled, subsurface safety valve
- Casing
- retrievable production packer
- Conductor with clamps and protection system
- Intelligent flow monitoring and control devices
- Liner
- Isolation packers
- Perforations
Typical intelligent completion components
Making the decision to run an intelligent completion

Advantages

- Better information about reservoir performance
- Greater recovery = greater profitability
 - Adjust well to maximise recovery
- Fewer production problems
 - Less water (can impede flow and can kill well)
 - Less scale (can block flow)

Disadvantages

- Higher initial cost
 - Often applied to more complex wells
- More moving parts
 - reliability to be considered – now largely addressed
- More sophisticated reservoir management
 - Real time decision making
Intelligent use of Intelligent Completions

22nd August 2017

Ian Phillips
Chief Executive

fostering and funding innovation